Testing grain-surface chemistry in massive hot-core regions
نویسندگان
چکیده
Aims. To establish the chemical origin of a set of complex organic molecules thought to be produced by grain surface chemistry in high mass young stellar objects (YSOs). Methods. A partial submillimeter line-survey was performed toward 7 high-mass YSOs aimed at detecting H2CO, CH3OH, CH2CO, CH3CHO, C2H5OH, HCOOH, HNCO and NH2CHO. In addition, lines of CH3CN, C2H5CN, CH3CCH, HCOOCH3, and CH3OCH3 were observed. Rotation temperatures and beam-averaged column densities are determined. To correct for beam dilution and determine abundances for hot gas, the radius and H2 column densities of gas at temperatures >100 K are computed using 850 μm dust continuum data and source luminosity. Results. Based on their rotation diagrams, molecules can be classified as either cold (<100 K) or hot (>100 K). This implies that complex organics are present in at least two distinct regions. Furthermore, the abundances of the hot oxygen-bearing species are correlated, as are those of HNCO and NH2CHO. This is suggestive of chemical relationships within, but not between, those two groups of molecules. Conclusions. The most likely explanation for the observed correlations of the various hot molecules is that they are “first generation” species that originate from solid-state chemistry. This includes H2CO, CH3OH, C2H5OH, HCOOCH3, CH3OCH3, HNCO, NH2CHO, and possibly CH3CN, and C2H5CN. The correlations between sources implies very similar conditions during their formation or very similar doses of energetic processing. Cold species such as CH2CO, CH3CHO, and HCOOH, some of which are seen as ices along the same lines of sight, are probably formed in the solid state as well, but appear to be destroyed at higher temperatures. A low level of non-thermal desorption by cosmic rays can explain their low rotation temperatures and relatively low abundances in the gas phase compared to the solid state. The CH3CCH abundances can be fully explained by low temperature gas phase chemistry. No cold N-containing molecules are found.
منابع مشابه
The abundance of HNCO and its use as a diagnostic of environment
Aims. We aim to investigate the chemistry and gas phase abundance of HNCO and the variation of the HNCO/CS abundance ratio as a diagnostic of the physics and chemistry in regions of massive star formation. Methods. A numerical-chemical model has been developed which self-consistently follows the chemical evolution of a hot core. The model comprises of two distinct stages. The first stage follow...
متن کاملDetection of a hot core in the intermediate - mass Class 0 protostar NGC 7129 – FIRS 2
the date of receipt and acceptance should be inserted later Abstract. We report high angular resolution (HPBW∼ 0.6 ′′ × 0.5 ′′ at 1.3mm) observations of the Class 0 intermediate-mass (IM) protostar NGC 7129–FIRS 2 using the Plateau de Bure Interferometer. Our observations show the existence of an intense unresolved source in the continuum at 1.3mm and 3mm at the position of the Class 0 object. ...
متن کاملFirst evidence for molecular interfaces between outflows and ambient cloud in high-mass star forming regions?
We present new observations of the CepA-East region of massive star formation and describe an extended and dynamically distinct feature not previously recognised. This feature is present in emission from H2CS, OCS, CH3OH, and HDO at –5.5 km s , but is not traced by conventional tracers of star forming regions H2S, SO2, SO, CS. The feature is extended up to at least 0.1 pc. We show that the feat...
متن کاملComplex Chemistry in Star-Forming Regions: An Expanded Gas-Grain Warm-up Chemical Model
Gas-phase processes were long thought to be the key formation mechanisms for complex organic molecules in star-forming regions. However, recent experimental and theoretical evidence has cast doubt on the efficiency of such processes. Grain-surface chemistry is frequently invoked as a solution, but until now there have been no quantitative models taking into account both the high degree of chemi...
متن کاملChemical processes in star forming regions
This paper will review the basic concepts of gas–phase and grain surface chemistry of dense molecular clouds, where low mass and high mass stars form. The chemistry of cold pre-stellar cloud cores, where molecular freezeout and deuterium fractionation dominate, will be presented. Then, following cloud evolution after protostellar birth, hot core and shock chemistry will be discussed in view of ...
متن کامل